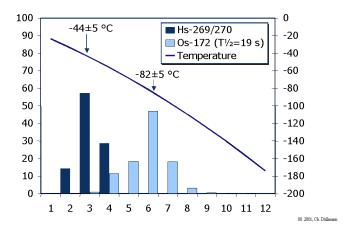
First Chemical Study of Element 108, Hassium

U.W.Kirbach+, H.Nitsche+‡, P.M.Zielinski+‡, T.N.Ginter+, D.C.Hoffman+‡, Ch.E.Düllmann§, B. Eichler§, H.W.Gäggeler§, D.T.Jost§, D.Piguet§, Z.Qin§, S.Soverna§, A.Türler§, A.B.Yakushev§, W.Brüchle**, E.Jäger**, V.Pershina**, M.Schädel**, B.Schausten**, E.Schimpf**, H-J.Schött**, G.Wirth**, R.Eichler++, P.Thörle++, N.Trautmann++, S.N.Timokhin+++, A. Vahle***


For the first time, a Hs compound has been investigated chemically, thereby extending the Periodic Table to Z=108. During 2001, the Heavy Element Chemistry Group invented the Cryogenic Thermochromatographic Separator¹ (CTS) to study the volatile Group 8 tetroxides. Using the CTS & COLD (Cryo On-Line Detector, a second-generation CTS), we were able to observe the nuclear decay chains from Hs and record the HsO_4 adsorption temperature (-44±5°C).

The heaviest element studied chemically so far was bohrium (Bh, Z=107) which behaves as a typical Group 7 element². The next heavier element, hassium (Hs) has a relatively long-lived isotope (269 Hs, $t_{1/2}=11.3s$) that decays by \Box -emission and was originally identified in the decay chain of $^{277}112^3$. Based upon Relativistic Density Functional calculations⁴, HsO₄ is predicted to have a electronic structure similar to its lighter homologue, OsO₄ and thus similar chemical behavior. Additionally, application of different semiempirical models describing the interaction of a MO₄ molecule with a SiO₂ surface predicted similar adsorption behavior of OsO₄ and HsO₄⁴.

The operating principle of the CTS (and COLD) is quite simple. After reaction of the Hs with oxygen to form HsO₄ using IVO (In-situ Volatilization and Online detection)⁶, the volatile tetroxide is then passed through a column formed by a series of parallel PIN-diode detectors (shown at right). Using LN₂ we cooled one end of the detectors and thus established a temperature gradient along the column. Transfer products are either deposited at the entrance if nonvolatile (e.g., ²¹¹At), or pass through to the end if volatile (e.g., ^{219,220}Rn).

Hs isotopes were produced in the reaction ²⁴⁸Cm(²⁶Mg; 5,4n)^{269,270}Hs with cross sections of 6 pb and 4 pb, respectively⁵. In the course of an experiment conducted at the GSI UNILAC data was collected during a 64.2-hour period and a beam

integral of 1.0 x 10^{18} ²⁶Mg ions. Seven \square chains that we attribute to HsO_4 decay were detected a t $-44\pm5^{\circ}$ C that compares with previous work done at LBNL using OsO_4 ($-82\pm5^{\circ}$ C). From these values, we calculate $\square H_{ads}$ values on silica of -46 ± 3 kJ mol⁻¹ for HsO_4 and -39.5 ± 1.0 kJ mol⁻¹ for OsO_4 . We conclude that Hs behaves as a typical Group 8 member of the Periodic Table.

Footnotes and References

†Lawrence Berkeley National Laboratory, Berkeley CA ‡Department of Chemistry, University of California Berkeley

§Paul Scherrer Institute, CH-5232 Villigen, Switzerland **Gesellschaft für Schwerionenforschung, Germany †† Institut für Kernchemie, Universität Mainz, Germany ††† Flerov Laboratory of Nuclear Reactions, Dubna, Russia

- *** Research Center Rossendorf e.V., Dresden, Germany
- 1. U.Kirbach, et al. Nucl. Instrum. Meth. A (in press)
- 2. R.Eichler et al., Nature 407, 63 (2000)
- 3. S.Hofmann et al., Z.Phys. **A354**, 229 (1996)
- 4. V.Pershina et al., J.Chem.Phys. 115, 792 (2001)
- 5. A.Türler et al., P SI 2001 Annual Report
- 6. Ch.E.Düllmann et al., Nucl. Instrum. Meth. A (in press)